Selective β2-adrenoreceptor stimulation attenuates myocardial cell death and preserves cardiac function after ischemia-reperfusion injury.
نویسندگان
چکیده
OBJECTIVE β(2)-adrenoreceptor activation has been shown to protect cardiac myocytes from cell death. We hypothesized that acute β(2)-adrenoreceptor stimulation, using arformoterol (ARF), would attenuate myocardial ischemia/reperfusion (R) injury via NO synthase activation and cause a subsequent increase in NO bioavailability. METHODS AND RESULTS Male C57BL/6J and endothelial NO synthase (eNOS) knockout mice were subjected to 45 minutes of myocardial ischemia and 24 hours of R. ARF or vehicle was administered 5 minutes before R. Serum troponin-I was measured, and infarct size per area-at-risk was evaluated at 24 hours of R. Echocardiography was performed at baseline and 2 weeks after R. Myocardial cAMP, protein kinase A, eNOS/Akt phosphorylation status, and NO metabolite levels were assayed. ARF (1 µg/kg) reduced infarct size per area-at-risk by 53.1% (P<0.001 versus vehicle) and significantly reduced troponin-I levels (P<0.001 versus vehicle). Ejection fraction was significantly preserved in ARF-treated hearts compared with vehicle hearts at 2 weeks of R. Serum cAMP and nuclear protein kinase A C-α increased 5 and 15 minutes after ARF injection, respectively (P<0.01). ARF increased Akt phosphorylation at Thr(308) (P<0.001) and Ser(473) (P<0.01), and eNOS phosphorylation at Ser(1177) (P<0.01). ARF treatment increased heart nitrosothiol levels (P<0.001) at 15 min after injection. ARF failed to reduce infarct size in eNOS(-/-) mice. CONCLUSIONS Our results indicate that β(2)-adrenoreceptor stimulation activates cAMP, protein kinase A, Akt, and eNOS and augments NO bioavailability. Activation of this prosurvival signaling pathway attenuates myocardial cell death and preserves cardiac function after ischemia/reperfusion.
منابع مشابه
Pretreatment with simvastatin attenuates myocardial dysfunction after ischemia and chronic reperfusion.
We have previously demonstrated that simvastatin attenuates myocardial cell necrosis after acute myocardial ischemia and reperfusion via induction of endothelial cell NO synthase. However, it remains unknown whether the cardioprotective effects of statins can persist after extended periods of reperfusion. Furthermore, it is unknown whether simvastatin therapy can attenuate postischemic cardiac ...
متن کاملHigh-molecular-weight polyethylene glycol protects cardiac myocytes from hypoxia- and reoxygenation-induced cell death and preserves ventricular function.
Apoptosis plays a significant role in maladaptive remodeling and ventricular dysfunction following ischemia-reperfusion injury. There is a critical need for novel approaches to inhibit apoptotic cell death following reperfusion, as this loss of cardiac myocytes can progressively lead to heart failure. We investigated the ability and signaling mechanisms of a high-molecular-weight polyethylene g...
متن کاملSignalling pathways in ischaemic postconditioning.
Coronary heart disease (CHD) is the leading cause of death globally. Following an acute coronary artery occlusion, timely myocardial reperfusion using either primary percutaneous coronary intervention (PCI) or thrombolytic therapy remains the most effective treatment strategy for reducing myocardial infarct size, preventing left ventricular remodelling, preserving left ventricular systolic func...
متن کاملThe effect of β-2 adrenoreceptor agonist inhalation on lungs donated after cardiac death in a canine lung transplantation model.
BACKGROUND It is a matter of great importance in a donation after cardiac death to attenuate ischemia-reperfusion injury (IRI) related to the inevitable warm ischemic time. METHODS Donor dogs were rendered cardiac-dead and left at room temperature. The dogs were allocated into 2 groups: the β-2 group (n = 5) received an aerosolized β-2 adrenoreceptor agonist (procaterol, 350 μg) and ventilati...
متن کاملRole of Endothelial Cells in Myocardial Ischemia-Reperfusion Injury
Minimizing myocardial ischemia-reperfusion injury has broad clinical implications and is a critical mediator of cardiac surgical outcomes. "Ischemic injury" results from a restriction in blood supply leading to a mismatch between oxygen supply and demand of a sufficient intensity and/or duration that leads to cell necrosis, whereas ischemia-reperfusion injury occurs when blood supply is restore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 32 8 شماره
صفحات -
تاریخ انتشار 2012